Sayfalar

25 Mart 2012 Pazar

FONKSİYON


FONKSİYON

A. TANIM
¹ Æ ve B ¹ Æ olmak üzere, A dan B ye bir b bağıntısı verilmiş olsun.
A nın her elemanı B nin elemanlarıyla en az bir kez ve en çok bir kez eşleniyorsa bu bağıntıya fonksiyon denir.
"ΠA ve y Î B olmak üzere, A dan B ye bir f fonksiyonu
f : A ® B ya da x ® f(x) = y biçiminde gösterilir. A ya fonksiyonun tanım kümesi, B ye de değer kümesi denir.
Yukarıda A dan B ye tanımlanan f fonksiyonu
f = {(a, 1), (b, 2), (c, 3), (d, 2)}
biçiminde de gösterilir.
Ü
Her fonksiyon bir bağıntıdır. Fakat her bağıntı fonksiyon olmayabilir.
Ü
Görüntü kümesi değer kümesinin alt kümesidir.
Ü
s(A) = m ve s(B) = n olmak üzere,
  i) A dan B ye nm tane fonksiyon tanımlanabilir.
 ii) B den A ya mn tane fonksiyon tanımlanabilir.
iii) A dan B ye tanımlanabilen fonksiyon olmayan bağıntıların sayısı 2× n – nm dir.
Ü
Grafiği verilen bir bağıntının fonksiyon olup olmadığını anlamak için, y eksenine paralel doğrular çizilir. Bu doğrular fonksiyonun belirttiği eğride en az bir ve en çok bir noktayı kesiyorsa verilen bağıntı x ten y ye bir fonksiyondur.


B. FONKSİYONLARDA İŞLEMLER
Ç B ¹ Æ olmak üzere,
 fonksiyonları tanımlansın.
  1. (f + g) : A Ç B ® , (f + g)(x) = f(x) + g(x)
  2. (f – g) : A Ç B ® , (f – g)(x) = f(x) – g(x)
  3. (f × g) : A Ç B ® , (f × g)(x) = f(x) × g(x)
  4. "ΠA Ç B için, g(x) ¹ 0 olmak üzere,
  1. Π olmak üzere,
    (c × f) : A ® , (c × f)(x) = c × f(x) tir.

C. FONKSİYON ÇEŞİTLERİ
1. Bire Bir Fonksiyon
Bir fonksiyonda farklı elemanların görüntüleri de farklıysa fonksiyon bire birdir..
BBuna göre, bire bir fonksiyonda,
"x1, x2 Î A için, x1 ¹ x2 iken f(x1¹ f(x2) olur.
Diğer bir ifadeyle,
"x1, x2 Î A için, f(x1) = f(x2) iken
x1 = x2 ise, f  fonksiyonu bire birdir.
Ü
s(A) = m ve s(B) = n (n ³ m) olmak üzere,
A dan B ye tanımlanabilecek bire bir fonksiyonların sayısı,

2. Örten Fonksiyon
Görüntü kümesi değer kümesine eşit olan fonksiyonlara örten fonksiyon denir.
Ü
f : A ® B
f(A) = B ise, f örtendir.
Ü
s(A) = m olmak üzere, A dan A ya tanımlanabilen bire bir örten fonksiyonların sayısı,
m! = m × (m – 1) × (m – 2) × ... × 3 × 2 × 1 dir.

3. İçine Fonksiyon
Örten olmayan fonksiyona içine fonksiyon denir.
Ü
İçine fonksiyonun değer kümesinde eşlenmemiş eleman vardır.
Ü
s(A) = m olmak üzere, A dan A ya tanımlanabilen içine fonksiyonların sayısı mm – m! dir.

4. Birim (Etkisiz) Fonksiyon
Her elemanı kendisine eşleyen fonksiyona birim fonksiyon denir.
      
ise, f birim (etkisiz) fonksiyondur.
Ü
Birim fonksiyon genellikle I ile gösterilir.

5. Sabit Fonksiyon
Tanım kümesindeki bütün elemanları değer küme-sindeki bir elemana eşleyen fonksiyona sabit fonksiyon denir.
Ü
"ΠA ve c Î B için,
      f : A ® B
      f(x) = c
ise, f sabit fonksiyondur.
Ü
s(A) = m, s(B) = n olmak üzere,
A dan B ye n tane sabit fonksiyon tanımlanabilir.

6. Çift ve Tek Fonksiyon
f(–x) = f(x) ise, f fonksiyonu çift fonksiyondur.
f(–x) = –f(x) ise, f fonksiyonu tek fonksiyondur.
Ü
Çift fonksiyonların grafikleri Oy eksenine göre simetriktir.
ÜTek fonksiyonların grafikleri orijine göre simetriktir.

D. EŞİT FONKSİYON
       f : A ® B
     g : A ® B
Her x Î A için f(x) = g(x) ise, f fonksiyonu g fonksiyonuna eşittir.

E. PERMÜTASYON FONKSİYON
       f : A ® A
olmak üzere, f fonksiyonu bire bir ve örten ise, f fonksiyonuna permütasyon fonksiyon denir.
A = {a, b, c} olmak üzere, f : A ® A
f = {(a, b), (b, c), (c, a)}
fonksiyonu permütasyon fonksiyon olup
 biçiminde gösterilir.


F. TERS FONKSİYON
f : A ® B, f = {(x, y)|x Î A, y Î B} bire bir ve örten fonksiyon olmak üzere,
f–1 : B ® A, f–1 = {(y, x)|(x, y) Î f} fonksiyonuna f nin ters fonksiyonu denir.
(x, y) Î f ise, (y, x) Î f–1 olduğu için,
y = f(x) ise, x = f–1(y) dir.
Ayrıca, (f–1)–1 = f dir.
(f–1)–1 = f dir. Ancak, (f–1(x))–1 ¹ f(x) tir.

f fonksiyonu bire bir ve örten değilse, f–1 fonksiyon değildir.

f : A ® B ise, f–1 : B ® A olduğu için, f nin tanım kümesi, f–1 in değer kümesidir. f nin değer kümesi de, f–1 in tanım kümesidir.

f(a) = b ise, f–1(b) = a dır.
f–1(b) = a ise, f(a) = b dir.


Ü
y = f(x) fonksiyonunun grafiği ile y = f–1(x) in grafiği
y = x doğrusuna göre birbirinin simetriğidir.
      
Ü
 olmak üzere,
Ü olmak üzere,


G. BİLEŞKE FONKSİYON
f : A ® B, g : B ® C fonksiyonları tanımlansın.
f ve g yi kullanarak A kümesinin elemanlarını C kümesinin elemanlarına eşleyen fonksiyona g ile f nin bileşke fonksiyonu denir.
      
Buna göre,
f : A ® B ve g : B ® C olmak üzere, gof : A ® C fonksiyonuna f ile g nin bileşke fonksiyonu denir ve g bileşke f diye okunur.
Ü
(gof)(x) = g[f(x)] tir.

Bileşke işleminin değişme özeliği yoktur.
Bu durumda, fog ¹ gof dir.
Bazı fonksiyonlar için fog = gof olabilir. Ancak bu “fonksiyonlarda değişme özeliği yoktur.” gerçeğini değiştirmez.

Ü
Fonksiyonlarda bileşke işleminin birleşme özeliği vardır.
Bu durumda (fog)oh = fo(goh) = fogoh olur.
Ü
I birim fonksiyon olmak üzere,
foI = Iof = f ve
f–1of = fof–1 = I dır.
Ü
f, g ve h fonksiyonları bire bir ve örten olmak üzere,
(fog)–1 = g–1of–1 ve
(fogoh)–1 = h–1og–1of–1 dir.
Ü
(fog)(x) = h(x)
ise, f(x) = (hog–1)(x) dir.
ise, g(x) = (f–1oh)(x) tir.

•  f–1 (x) = f(x) tir.
•  (fof) (x) = x
•  (fofof) (x) = f(x)
•  (fofofof) (x) = x
...


H. FONKSİYONUN GRAFİĞİ
Bir fonksiyonun elemanlarına analitik düzlemde karşılık gelen noktaların kümesine bu fonksiyonun grafiği denir.
f : A ® B, f = {(x, y)|x Î A, y Î B, y = f(x)}
(a, b) Î f
olduğundan
f(a) = b dir.
Ayrıca, f–1(b) = a dır.

Ü
Yukarıdaki y = f(x) fonksiyonunun grafiğine göre,
f(–3) = 3, f(–2) = 1, f(–1) = 2, f(0) = 2, f(1) = 1,
f(2) = 0, f(3) = 2, f(4) = 1, f(5) = 0 dır.

İŞLEM


İŞLEM



A. TANIM

Herhangi bir A kümesinden A kümesine tanımlanan her fonksiyona birli işlem denir.

Ì B olmak üzere, A ´ A kümesinden B kümesine tanımlanan her fonksiyona ikili işlem veya kısaca işlem denir.
İşlemler;  gibi simgelerle gösterilir.


B. İŞLEMİN ÖZELİKLERİ

A kümesinde p ve « işlemleri tanımlanmış olsun. Buna göre, aşağıdaki 7 özeliği inceleyelim.


1. Kapalılık Özeliği

" (Her) a, b Î A için a p b nin sonucu A kümesinin bir elemanı ise, A kümesi p işlemine göre kapalıdır.


2. Değişme Özeliği

" (Her) a, b Î A için, a p b = b p a ise, p işleminin değişme özeliği vardır.


3. Birleşme Özeliği

" (Her) a, b, c Î A için a p (b p c) = (a p b) p c ise, p işleminin birleşme özeliği vardır.


4. Birim (Etkisiz) Eleman Özeliği
" (Her) x Î A için, x p e = e p x = x ise, e ye p işleminin etkisiz elemanı denir.
ΠA ise, p işlemine göre A kümesi birim eleman özeliğine sahiptir.

5. Ters Eleman Özeliği

p işleminin etkisiz elemanı e olsun.

ΠA için, a p b = b p a = e olacak biçimde bir b varsa b elemanına p işlemine göre a nın tersi denir.
a nın tersi b ise genellikle b = a–1 biçiminde gösterilir.
A kümesinin bütün elemanlarının p işlemine göre, tersleri A nın elemanı ise, p işlemine göre A kümesi ters eleman özeliğine sahiptir.
 •  Birim elemanın tersi kendisine eşittir.
 •  Tersi kendisine eşit olan her eleman birim eleman olmayabilir.


6. Dağılma Özeliği
" a, b, c Î A için,
« (b p c) = (a « b) p (a « c) ise,
« işleminin p işlemi üzerine soldan dağılma özeliği vardır.
(a p b) « c = (a « c) p (b « c) ise,
« işleminin p işlemi üzerine sağdan dağılma özeliği vardır.
« işleminin p işlemi üzerine; hem soldan, hem de sağdan dağılma özelliği varsa « işleminin p işlemi üzerine dağılma özelliği vardır.


7. Yutan Eleman Özeliği

" x Î A için, x p y = y p x = y olacak biçimde bir y varsa y ye p işleminin yutan elemanı denir.

ΠA ise, p işlemine göre A kümesi yutan eleman özeliğine sahiptir.
Yutan elemanın tersi yoktur. Fakat tersi olmayan her eleman yutan eleman değildir.


C. TABLO İLE TANIMLANMIŞ İŞLEMLER

      

A = {a, b, c, d} kümesinde  işlemi yukarıdaki tablo ile tanımlanmış olsun.
Ü
 c nin sonucu bulunurken, başlangıç sütununda b, başlangıç satırında c bulunur. Bunların kesiştiği bölgedeki eleman, b  c nin sonucudur. Buna göre, b  c = a dır.
Ü
Başlangıç satırındaki ve başlangıç sütunundaki elemanların sonuçlarının görüldüğü kısımda A kümesine ait olmayan eleman yoksa A kümesi  işlemine göre kapalıdır.
Ü
Sonuçlar kısmı, köşegene göre simetrik ise,  işleminin değişme özeliği vardır.
Ü
Tablonun sonuçlar kısmında, başlangıç sütununun ve başlangıç satırının görüldüğü sütunun ve satırın kesişimindeki eleman etkisiz elemandır. Yukarıda tablo ile tanımlanan  işleminin etkisiz elemanı d dir.
Ü
Yutan eleman hangi elemanla işleme girerse girsin, sonuç kendisine eşit olur. Bunun için, tablonun sonuçlar kısmında aynı elemandan oluşan satır ve sütun belirlenir. Bulunan yutan elemandır.
 
Yandaki tablo, A = {1, 2, 3} kümesinde tanımlanan  işlemine göre düzenlenmiştir.
Buna göre,
 işleminin yutan elemanı 1 dir.
 işleminin birim (etkisiz) elemanı 2 dir.


D. MATEMATİK SİSTEMLER

1. Tanım

A, boş olmayan bir küme olmak üzere, « işlemi A da tanımlı olsun.
(A, «) ikilisine matematik sistem denir.


2. Grup

¹ Æ olmak üzere, A kümesinde tanımlı « işlemi aşağıdaki dört koşulu sağlıyorsa, A kümesi « işlemine göre bir gruptur.

  1. A, « işlemine göre kapalıdır.
  2. A üzerinde « işleminin birleşme özelliği vardır.
  3. A üzerinde « işleminin birim (etkisiz) elemanı vardır.
  4. A üzerinde « işlemine göre her elemanın tersi vardır.
A üzerinde tanımlı « işleminin değişme özelliği de varsa (A, «) sistemi değişmeli gruptur.



3. Halka

¹ Æ olmak üzere, A kümesi üzerinde tanımlı D ve « işlemleri aşağıdaki üç koşulu sağlıyorsa (A, D«) sistemi bir halkadır.

  1. (A, D) sistemi değişmeli gruptur.
  2. A kümesi « işlemine göre kapalıdır.
  3. « işleminin D işlemi üzerinde dağılma özelliği vardır.
Ü
« işleminin değişme özelliği de varsa (A, D«) sistemi değişmeli halkadır.
Ü
« işleminin A kümesinde birim (etkisiz) elemanı da varsa (A, D«) sistemine birim halka denir.